
Pergamon 

www.elsevier.com/locate/jappmathmech 

.I. Appl. Maths Mechs, Vol. 67, No. 5, pp. 763-773,2003 
0 2003 Elsevier Ltd 

PII: SOOZl-8928(03)00123-O 
All rights reserved. Printed in Great Britain 

0021-8928/$-see front matter 

THE STEADY VIBRATIONS AND RESISTANCE 
OF A RAILWAY TRACK TO THE UNIFORM 
MOTION OF AN UNBALANCED WHEEL? 

P. M. BELOTSERKOVSKII 
Moscow 

(Received 15 April 2002) 

A model of a railway track, in the form of an infinite Timoshenko beam resting on equally spaced massive visco-elastic supports, 
is considered. Steady vertical vibrations of the track due to a harmonic force moving along it at a constant velocity are investigated. 
The vertical displacement of the track is represented in a moving system of coordinates by a generalized Fourier series. The 
steady vertical vibrations of a massive rigid wheel rolling along the track at a constant velocity and loaded by a vertical harmonic 
force are investigated. The track-wheel interaction force is expressed as a generalized Fourier series whose coefficients are 
determined using an equality relating the vertical displacements of the wheel and the track. Vibrations of the wheel due to 
centrifugal force and periodic changes in the track parameters are considered. Parametric vibrations of a wheel moving at a constant 
velocity under a static load due to periodic variation in the stiffness of the track are investigated. The force with which the track 
resists the uniform motion of an unbalanced wheel is computed. 0 2003 Elsevier Ltd. All rights reserved. 

1. THE TIMOSHENKO BEAM 

Timoshenko’s theory [l, 21 makes allowance for both bending and shear deformations of a beam whose 
elastic axis experiences discontinuities in the first and third derivatives at the points of application of 
concentrated transverse forces. This theory was reduced in [l] to a system of two partial differential 
equations and applied to the problem of the free vibrations of a single-span beam; there were no 
concentrated transverse forces or discontinuities in the derivatives. The static displacement of a beam 
loaded by concentrated transverse forces was computed in [2]; the problem was reduced to a single 
ordinary differential equation, which simplified allowance for discontinuities. 

We shall reduce this equation to a more general form by adding terms designed to take into account 
both a transverse load and moments, either concentrated or distributed along the beam. An element 
of the beam, loaded by a distributed moment m = m(x) and distributed transverse force 4 = q(x), 
bounded by cross-sections at x andx + du, is shown in Fig. 1. The figure also shows the positive directions 
of the bending moment 44, of shearing force Q in a cross-section of the beam, and also of the angles 
of rotation cp and dy/o!x of the cross-section of the beam and its elastic axis y = y(x). 

Under the action of the shearing force Q, the rectangular beam element becomes a parallelogram, 
and adjacent sides rotate relative to one another (Fig. 1) through an angle y = Q/R. The quantity 
R = VGA is known as the shear stiffness, where G is the shear modulus, A is the area of cross-section 
of the beam, and the coefficient k’ allows for non-uniform distribution of the shearing force over the 
cross-section. The quantities cp, y and dyldx satisfy the equality 

dy/&=cp-y=cp-QIR (1.1) 

At the point where the concentrated transverse force is applied to the beam, the derivative dyldx is 
undefined, while the shearing force Q experiences a jump. By the last equality, the angle of rotation 
dyldx of the elastic axis of the beam also experiences a jump at that point. These jumps are related by 
the equality 

[Ql = -R[dyldrl (1.2) 
(the square brackets denote the jump in the bracketed quantity, that is, the difference between its right 
and left limits). It follows from the equilibrium conditions qdx - dQ = 0 and mdx + dM - Qdx = 0 of 
the beam element that 

q = dQJdx, Q = dMidx + m, d2Mhi? = dQ/dx - dmldx = q(x) - dmlak 
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Fig. 1 

The bending displacement of the beam is defined by the equality 

M = EJdq/ak (1.3) 

where EJ is the bending stiffness of the beam, E is its modulus of elasticity, and J is the moment of 
inertia of the beam cross-section. Differentiating Eq. (1.1) twice and using the equilibrium conditions 
of the beam element and Eq. (1.3), we obtain 

d3yJak3 = (EJ)-‘dM/dx - R’dqldx = (EJ)-‘(Q - m) - R’dqldx 

whence it follows that at the point where the concentrated transverse force is applied to the beam, 

IQ1 = EJW3y/d.x? (14 

A third differentiation yields the equation 

d4yJak4 - (EJ)-‘(q - dmldr) + R’d2ql& = 0 (1.5) 

which determines the transverse displacement of the beam. 

2. THE STEADY VIBRATIONS OF A RAILWAY TRACK 

We will represent the track as a Timoshenko beam with a density per unit length po. Let t and 
y(x, t) denote the time and transverse displacement of the beam, respectively. We replace the quantity 
4 = q(x) in Eq. (1.5) by the expression & t) - poa2y(x, t)lat2, in which the first term is the external 
transverse load and the second is the inertia force of the transverse motion of the beam. Let m = m(x) 
denote the moment -(poJ/A)a2cp/&2 of the forces of inertia of rotation of the beam cross-section. Finally, 
we obtain an equation for the vertical vibrations of the track: 

E  J~~Y(XY t )  

ax4 
+ poa2~k t) -- 

at2 
po 

hJa2q(x t) EJa2q(x t) = q(x,t)+-L--d 
RA at2 R ax2 

(2.1) 
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Equation (2.1) was obtained previously in [3] by introducing two independent variablesy and cp and 
subsequently eliminating cp. The application of Eq. (1.5), as well as equalities (1.2) and (1.4), leads directly 
to Eq. (2.1) and enables us to formulate a boundary-value problem for this equation. 

Suppose the track is resting on sleepers with spacing 1 and is disturbed by a vertical concentrated 
harmonic force aOexp(iu@) moving along the track without detachment at a constant velocity uo. If 
x = 0 corresponds to a sleeper and t = 0 corresponds to the time at which the force passes over that 
sleeper (Fig. 2), the transverse load on the track may be expressed as 

4(x9 t) = aoexp(ioor)S(x - uOt) 

The Dirac function 6(x - uOt) defines the concentrated disturbing force at the point x0 = uOt. The 
quantity Q. = woZ/uo equals the phase increment of the harmonic force in the time l/u0 that the force 
takes to traverse the distance 1. During that time the harmonic force acquires the factor exp(iao). The 
steady vertical displacement y(x, t) of the track acquires the same factor [4,5]. Therefore, 

y(x + 1, t + l/v,) = exp(i@,)y(x, t) P-2) 

Relation (2.2) defines a solution of the equation of vertical vibrations of the track (2.1) which is 
bounded as t + 2 00 . If e+r = 27~pi2)~/1, wherepi is an integer, then the frequency of the disturbing force 
is a multiple of the sleeper passing frequency uo/E. In that case exp(iQo) = 1, and condition (2.2) becomes 
the condition for periodic vibrations [6] 

ye + I,1 + l/u,) = y(x, t) 

Steady vibrations of the track due to uniform movement of a constant transverse force lead to the same 
condition [7]. 

Suppose the frequency of the disturbing force and the sleeper passing frequency are commensurate, 
their quotient being equal to a rational numberp&, wherepi andpz relatively prime integers. Repeated 
use of relation (2.2) yields the condition 

Y(X + PJ, f + P,UqJ = y(x. t) (2.3) 

which generalizes the condition for periodic vibrations and shows that the quantityy(x, t) is transformed 
into itself under a single translation byp$ with respect tox andp21/uo with respect to t. If the frequency 
of the disturbing force and the sleeper passing frequency are not commensurate, the displacement of 
the track will be periodic neither in the fixed coordinate system nor in a coordinate system attached to 
the moving harmonic force. 

We shall assume that the reaction of the support at x = 0 reduces to a vertical force k(0, t) whose 
positive direction is shown in Fig. 2. At a high frequency of the disturbing force and high velocity of 
motion, sleeper bending must be taken into account, as well as wave propagation in the ballast and the 
ground [5,8]. To that end, a two-mass model of track support is used [9]. At moderate values of these 
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quantities, the sleeper may be represented by a single mass supported by a spring and a damper in 
parallel. Then 

MO, t) = p@*y(o, t)/# + rlily(0, tyat + uly(0, t) (2.4) 

The quantities pJ, rl and ul are the support mass, damper viscosity and spring stiffness; they are expressed 
in terms of the parameters of a suitable uniform viscoelastic foundation. 

At x = 0 the shearing force experiences a jump discontinuity of -k(O, t). By Eqs (1.2) and (1.4), 
the functions EJa3y(x, #Ix3 and -Rdy(x, t)l& experience the same jump discontinuity at x = 0. The 
values of these functions to the left of the supports at points x = 0 and x = 1 satisfy condition (2.2). 
Changing at x = 0 to the values of these functions to the right of the support, we obtain four boundary 
conditions 

W1 f + Nvdl~~ = exp(i%-J(d”y(O, t)/&? + K&O, r)) 

n=O, 1,2,3; rcc)=O,rcr=-R1, rc2=o, rc3=(EJ)-r 

We shall assume that each point of the beam was at rest before the approach of the disturbing force 
and, as a result of the viscous resistance in the supports, it returns to that state after the force has 
departed. Thus, y(x, t) + 0 as t + + 03 together with its derivatives, so that the function admits of a 
Fourier transform with respect to t. 

We substitute 4(x, t) into Eq. (2.1) and change to dimensionless variables and the parameters 

X = x/l, T = v,r/l, Y(X, T) = y(x, t)/l, K(0, T) = k(0, t)l*/(EJ) 

Note that the dimensionless coordinatesXo =x0/1 = u&l of the point of application of the disturbing 
force coincides with the dimensionless time T. We define the dimensionless amplitude of the disturbing 
force as& = ao12/(EJ) and note that 

6(1(X-T)) = 8(X-T)lZ, @T-X) = 6(X-T) 

The Fourier transformation and the inverse Fourier transformation are defined as 

+- +- 
I Y(X, T)exp(-iQT)dT = Y*(X), Y(X, T) = & I Y*(X)exp(iQT)d@ (2.5) 

where @ is a dimensionless parameter. We then put 

+-J 
I X(0, T)exp(-i@T)dT = K(@)Y*(O), K(a) = K, + iK,@ - K,@* 
-03 

K, = u14/(EJ), K, 3 
= rv,l I(EJ), 

22 
K, = plvol l(EJ) 

The form of the right-hand side of the first equality follows from the linearity of the problem. Taking 
Fourier transformations in the equation of vertical vibrations of the track and in the four boundary 
conditions, we get 

d’Y*(X)ldX4 + (B + I-)d*Y*(X)ldX* + (BT- A)Y*(X) = 

= A,-,(1 +~((@a-a)*-B))exp(i(‘Z+,-@)X) 
(2.6) 

A = p,,v;l*Q*/(EJ), B = pov@*/(EA), l- = P&D*/R 

JY*(l)ldX” = exp((i(Qa- @))d”Y*(O)ldX” + K,K(@)Y*(O)) 

n=0,1,2,3; K,=O, K,=-W. K,=O, K,=l, yf=r/A 

(2.7) 
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Solving the ordinary differential equation (2.6) with boundary conditions (2.7) in the interval 0 2 XI 1, 
we obtain 

Y*(X) = A,(exp(i(@a- @)X) - J(@)N(X, @))P,(@) 

2 sh(o,(l -X)) + exp(i(@,-cD))sh(aiX) 
N(X, Q) = Cl- \Iro,) 

2(0: + o;)(ol(cos(~o- Q) - cho,) 

z sin(o,(l -X))+ exp(i(@O-@))sin(a,X) 
-(I +v,) 

2(o:+o~)(o,(cos(~,-~)-coso,) 

20;, l = ((B -r)2 + 4A)ln a (B + r) 

J(@) = K(@)D(@)I(K(cP)+D(@)), D(Q) = l/N(O,@) 

P,(Q) = 
1 +w((@-@~)~-B) 

(0-@J4-(B+T)(@-@J2+BI=A 
Qn = @,+2xn 

Using the Fourier expansion 
+- 

exp(i(Q,-(P,)X)N(X, a) = c Q,(@)exp(i2lcmX) 
m=-m 

Q,<*,> = 
1 +yr((wD,)2-B-r) 

(@-@,,,)4-(B+I-)(Q,-@,)2+BI=A 

(2.8) 

(2.9) 

and then taking inverse transformations, we obtain a dimensionless quantity 

A0 
+- 

t 

+- 
Y(X, T) = sexp(i@,X) j 1 -J(a) c Q,(@)exp(i2nnX) 

-00 m=-03 I 
x 

xP,(@)exp(i<P(T-X))d* 

The poles of the integrand in (2.10) are investigated in the same way as in [4, 61. The investigation 
shows that the integrand has no real poles. The integral (2.10) exists and is unaffected if the quantities 
T and X are simultaneously increased by one. When that is done the function exp(iQoX) and together 
with it Y(X, T) are multiplied by exp(iQO). Thus, the quantity Y(X, T) satisfies condition (2.2), and so, 
for any T and X, it is a solution of the problem. At the point of application of the harmonic force the 
quantity T - X vanishes. In the moving system of coordinates it is a constant, and formula (2.10) 
represents the vertical displacement of the track as a generalized Fourier series. 

3. STEADY VIBRATIONS OF A WHEEL AND TRACK 

Suppose a wheel of mass m. is moving along a track without detachment, at a constant velocity uo. We 
shall investigate the steady vertical vibrations of the wheel and the track due to a vertical harmonic 
force aoexp(ia@). The vertical displacement of the track satisfies condition (2.2). The vertical displacement 
of the wheel ye(t) and the wheel-track interaction force f(t) satisfy the conditions 

yo(f + l/u,) = exp(i@o)yo(O, f(t + I/u,) = exp(i@o)f(t) 

according to which each of these quantities is obtained by evaluating the product of exp(ioot) and a 
periodic function of frequency equal to the sleeper passing frequency uo/l. Thus, the wheel-track inter- 
action force f(t) may be represented as a generalized Fourier series 

+- 

f(t) = u. C F,exp i -++ 
cc 

2mnu, 
1 0 )> 

t 



768 I? M. Belotserkovskii 

Fig. 3 

Throughout, m will denote an integer variable. The dimensionless coefficients F, of the series have 
to be determined. The directions of the forces applied to the wheel and the track are shown in Fig. 3. 
The vertical displacement of the wheel is bounded and is determined by the equation 

d*yoW 27cmvor 
m,- = 

dt* 
a,( 1 - F,)exp(ioaf) -a, c F,,,exp 1 

m#O 

Integrating the differential equation and changing to the dimensionless vertical displacement of the 
wheel Yo(7’) = yo(l)/l, mass MO = mou@.f) and force F(T) = f(t)12/(D), we obtain 

F(T) = A, 5 F,,,exp(i@,T) 
pplZ-C.2 

(3.1) 

Y,(T) (3.2) 

The steady vertical vibrations of the wheel (3.2) are bounded. 
Let Y,(X, T) denote the dimensionless displacement of the track due to the dimensionless force 

exp(iQ,T). Replace (Do by CD,, PO(Q) by P,(a), and Y(X, T) by Y,(X, T) in Eqs (2.8) and (2.10). Now, 
substitutingx = 0 in Eq. (2.8) and taking the inverse transformation, we obtain the dimensionless vertical 
displacement of the beam: 

Y,(Q T) = & I J’(@)P,(Q)exp(i@T)d@ 
-ca 

J+W = D(cP)I(K(@) + D(@)) 

Using expansion (2.10), we obtain 

Y,,<X T) = 5 W(m, n, T-X)exp(iQ,X) 
m=-- 

(3.3) 
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+- 
W(m,n,T-X) = -$-J J(@>Q,(@)P,(@)exp(i@(Z’- X))d@, m f n 

-ca 
+=- 

W(n,n,T-X) = &, (l-J(@)Q,(@))P,(@)exp(i@(T-X))d@ 
-m 

Let Y(X, T) denote the dimensionless vertical displacement of the track due to the dimensionless 
moving force F(T). Then 

Y(X,T) = A0 i F,Y,(X,T) = A0 z F, 5 W(m,n, T-X)exp(i@,X) (3.4) 
n=--00 “Z--o0 m=-ca 

At X = T the last quantity determines the dimensionless vertical displacement of the track at the 
point of contact with the wheel, and it is equal to YoCT). Equating the coefficients of exp(iQmX) in the 
expansions of Y(,(T) and Y(T, T), we obtain an infinite system of linear equations 

+- +- 
MO@: c F,,W(O,n,O)-F,, = 1, M,@i c F,,W(m,n,O)-F, = 0, m#O (3.5) 

II=-c-2 "Z--o0 

for determining the infinite set of unknowns F,. 
The spring-cushioned part of the carriage is separated from the wheel by an elastic spring. In the 

first approximation, therefore, its action on the wheel is a static load. Consider the vibrations of the 
wheel due to this static load. We have o. = 0, Q. = 0, @‘m = 27vn, and the vertical displacements of 
the wheel and track are real numbers. By the first equation of (3.5), we have F. = 1. The coefficients 
F, and F-, are complex conjugates. The real number F,exp(i2mT) + F+exp(-i27vnT) defines the 
mth harmonic component of the wheel-track interaction. 

The results of computations of the dimensionless amplitude of that harmonic, which is equal to 2 ] F, 1, 
as a function of the velocity of motion u. for a wheel of mass m. = 700 kg, m = 1,2, and track parameters 

EJ = 3.57 x lo6 Nm2,A = 0.006 m2, k’ = 0.34, p. = 48 kg/m, 1 = 0.8 m 

u = 40 x lo6 Nm2, p1 = 43.6 kg/m, Y = 26 x lo3 Ns/m2 

are shown in Fig. 4 (the solid curves). The amplitude of the first harmonic reaches its maximum value, 
comprising 20% of the static load, at a critical velocity 123.8 km/h. At this velocity the frequency of 
parametric disturbance of the wheel due to periodic variation of the track stiffness [6] equals the sleeper 
passing frequency of 43 Hz and is identical with the frequency of the free vibrations of the wheel set 
on the track. Thus, one has parametric resonance. The maximum value of the amplitude of the second 
harmonic corresponds to a velocity of 61.9 km/h (half the aforementioned critical velocity) and the same 
frequency of 43 Hz. 

These amplitudes, computed ignoring sheer deformation in the rail, are shown in Fig. 4 by the dashed 
curves. Owing to the lack of the shear deformation, the track stiffness increases by 5% and accordingly 
there is an increase in the frequency of free vibrations of the wheel. That is why the apexes of the dashed 
curves are displaced toward high velocities. The significant decrease in amplitude indicates that 
parametric perturbation of the wheel is associated with that deformation. It should be mentioned that 
in previous studies [lo-131 of parametric vibrations of the track and wheels of railway carriages, shear 
deformation in the rail was not taken into consideration. Hence the vibrations turned out to be 
insignificant. 

4. THE RESISTANCE OF A RAILWAY TRACK TO 
UNIFORM MOTION OF A WHEEL 

The resistance of a homogeneous railway track to uniform motion of a wheel at constant loads has been 
studied in [14,15] ignoring shear deformation in the rail. The motion of the wheel produces a displace- 
ment of the track which is stationary in the moving system of coordinates. The resistance of the sub- 
rail bedding retards the deformation of the rail. Therefore, the lowest point of the elastic axis of the 
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rail lags behind the moving wheel, which is kept high by a lengthwise force that overcomes the resistance 
of the track and makes uniform motion of the wheel possible. Thus, the resistance of the track is similar 
to the wave resistance of water to the motion of a boat. 

Shear deformation in the rail causes a break in the elastic axis of the rail at the point of contact with 
the wheel, so that the approach described above is no longer possible. Below we develop a different 
approach to computing the resistance of a railway track to the uniform motion of a wheel loaded by a 
vertical periodic force. The vibrations of the supports are accompanied by the absorption of energy, 
determined in the form of a quadratic functional and computed using Parseval’s equality. The energy 
is replenished by a lengthwise force which keeps the wheel in uniform motion and is equal to the force 
of resistance of the track to the motion. 

We shall first assume that the vertical displacement of the track has the periodp& defined by Eq. 
(2.3). The average power developed by the vertical force in that period is zero. The motion of the loaded 
wheel is accompanied by absorption of energy by the sub rail bedding and erosion of ballast. The 
lengthwise force that keeps the wheel in motion is a single energy source. Equating the power developed 
by the lengthwise force to the power absorbed by the sub-rail bedding, we determine the lengthwise 
force and thus also the resistance of the track to the wheel’s motion. By (2.3) the pressure of the rail 
on a sleeper at a point Xj = jl (j = 0, + 1, 22, 
~(0, t -j&J. 

. ..) is equal to k(j, t) = k(0, t - jl/Q, and y(Xj, t) = 

The instantaneous power developed by the force k(j, t) is computed as the product of that force by 
the vertical velocity of the rail, @(xi, t)/&. Summing the power over all the sleepers, we determine the 
instantaneous power 

+- 
aY(xjY f, N(f) = c hj, o-g-d’ 

j=4a 

expended by the uniformly moving wheel in deforming the track. Averaging the instantaneous power 
N(t) over the time interval 0 I f I p2Z/q, corresponding to the wheel passing a distancepzl, we obtain 

Replacing the quantity t - jpdvo in each term of this sum by t and changing the limits of integration, 
we obtain 
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(P* - 1 )~~&I P,llUo (P* + 1 wu, 
(N) = zz . . . + J + j + J + . . . k(O,t)aqdr 

-I/v, 0 11 “, I 

The right-hand side of this expression is an infinite sum (in both the positive and negative directions) 
of integrals whose intervals of integration are of the same 1engthpJ. The limits of integration of each 
term are obtained by successively increasing the limits of integration of the first term by I/uo. Thus, the 
result of the integration is equal to the product ofp2 and an integral with two infinite limits. Dividing 
byp2, we obtain the equality 

(4.1) 

which shows that the average power absorbed by all the sleepers in the time Z/v0 needed by the wheel 
to transverse the distance between sleepers is equal to the power absorbed by one sleeper as the time 
varies from --oo to +m. 

If the vertical displacement of the rail is not periodic, then for sufficiently largep* Eq. (2.3) will hold 
approximately, to within a prescribed accuracy. Equation (4.1) is independent ofp2 and consequently 
is exact for non-periodic rail displacement as well. 

Substituting (2.4) into integral (4.1) and taking into consideration that, at any point x, the vertical 
displacement y(x, t) of the rail and its derivatives tend to zero as t + + w, we obtain 

In the linear formulation of the problem considered, there is no lengthwise force keeping the wheel 
in uniform motion, the vertical displacement of the raily(x, t) is a small (first-order) quantity, and higher- 
order small quantities are not taken into consideration. The average power (N) defined by the quadratic 
functional (4.2) is a small (second-order) quantity. 

The constant forcef, satisfying the equality (N) = f*uo is identical with the average resistance of the 
track to uniform motion of the wheel. The transforming in the integral (4.2) to dimensionless variables 
and dividing both sides of the equality by uo, we obtain 

f* = ,rl+$qp)idT 
-02 

5. COMPUTATION OF THE RESISTANCE OF THE RAILWAY TRACK 

The fact that formulae (4.2) and (4.3) are non-linear complicates the computation of the track resistance 
to the motion of a wheel loaded by vertical harmonic forces of a different frequency. The computation 
is simplified by using Parseval’s equality [ 161, which has the following form for the Fourier transformation 
(2.5) 

+- +- 

J lY(X, T)12dT = (2d j IY*(X)I*dQ, 

Differentiating the second equality of (2.5) with respect to T and putting X = 0, we obtain 

If the quantities Y(0, T) and Y*(O) satisfy relation (2.9, then i@p(O) is the Fourier transform of the 
derivative aY(0, T)/aT. Applying Parseval’s equality to the derivative and substituting the result into 
Eq. (4.3), we obtain 
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A bar over a symbol denotes the complex conjugate. 
Let us compute the average resistance of the railway track to the uniform motion of a wheel loaded 

by a vertical force 

aocos(oot) = aO(exp(io,t) + exp(-iwet))/:! (5.2) 

Th;;;rms on the right of Eq. (5.2) are complex conjugates. 

J-(Q) = D(aq(K(-a,) + D(W) 

According to Eqs (3.3) and (3.4), the dimensionless displacement of a sleeper, corresponding to the 
first exponential function on the right of Eq. (5.2), can be written in the form 

n=-ca n=- 4 

We now take complex conjugates in the last equality and replace Q by -@. This sequence of actions 
does not change K(a). We now write the dimensionless displacement of the sleeper corresponding to 
the second term in the form 

Y(O, T) = A, 5 $+j J+(-@)P,(-@)exp(iQ,T)dQ 
n=- -00 

The dimensionless displacement of the sleeper corresponding to the force (5.2) has the Fourier 
transformation 

$? 5 $ (FJ+p)P,(@) + F”J-(-@)P,(-@))dQ, 
n=-cm -m 

We now take complex conjugates 

and substitute the product of the last two expressions into formulae (5.1). Changing the order of 
summation and integration, we can compute the track resistance to the motion of a wheel loaded by 
the vertical force (5.2) as a quadratic form 

f* = - “y’ 5 5 (S,(m,n)F,F,+S ( 
- - 

2 m, n)F,F, + S,(m, n)F,,,F, + S&m, n)F,,,F,) 

The coefficients of the quadratic form Si(m, n) (j = 1,2,3,4) are integral, which are computed at the 
same time as the coefficients W(m, II, 0) of system (3.5). 

The results of computations off, as a function of the velocity u. of motion of the wheel are shown 
in Fig. 5. Curve 1 is the track resistance to the motion of a balanced wheel under a static load of 
5.78 x lo4 N, and curve 2 is the track resistance to the motion of an unbalanced wheel of disbalance 
0.5 kg with the same static load. The ratio of the wheel circumference to the sleeper spacing is 
conventionally taken to be 73/24. The period of vertical vibrations of the wheel corresponds to 24 
revolutions of the wheel and to a track length equal to 73 sleeper spacings. In both cases, the track 
resistance disappears as u. + 0 and increases sharply at a velocity of 123.8 km/h. The first fact is explained 
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Fig. 5 

by the wave nature of the resistance. The second is associated with the parametric resonance of the 
wheel. 

The centrifugal force significantly increases the track resistance to the motion of an unbalanced wheel 
at velocities exceeding 150 km/h. The critical velocity of the wheel corresponding to the centrifugal force 
is considerably greater than the latter value. 
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